Wednesday 9 October 2013

refrigeration cycle


Refrigeration cycle 

A sequence of thermodynamic processes whereby heat is withdrawn from a cold body and expelled to a hot body. Theoretical thermodynamic cycles consist of nondissipative and frictionless processes. For this reason, a thermodynamic cycle can be operated in the forward direction to produce mechanical power from heat energy, or it can be operated in the reverse direction to produce heat energy from mechanical power. The reversed cycle is used primarily for the cooling effect that it produces during a portion of the cycle and so is called a refrigeration cycle. It may also be used 
In the refrigeration cycle a substance, called the refrigerant, is compressed, cooled, and then expanded. In expanding, the refrigerant absorbs heat from its surroundings to provide refrigeration. After the refrigerant absorbs heat from such a source, the cycle is repeated. Compression raises the temperature of the refrigerant above that of its natural surroundings so that it can give up its heat in a heat exchanger to a heat sink such as air or water. Expansion lowers the refrigerant temperature below the temperature that is to be produced inside the cold compartment or refrigerator. The sequence of processes performed by the refrigerant constitutes the refrigeration cycle. When the refrigerant is compressed mechanically, the refrigerative action is called mechanical refrigeration.
There are many methods by which cooling can be produced. The methods include the noncyclic melting of ice, or the evaporation of volatile liquids, as in local anesthetics; the Joule-Thomson effect, which is used to liquefy gases; the reverse Peltier effect, which produces heat flow from the cold to the hot junction of a bimetallic thermocouple when an external emf is imposed; and the paramagnetic effect, which is used to reach extremely low temperatures. However, large-scale refrigeration or cooling, in general, calls for mechanical refrigeration acting in a closed system. 

No comments:

Post a Comment